REACTIONS BETWEEN YBa₂Cu₃O₇₋₈ AND La₂O₃ AND SrCO₃

Z. Hegedüs

Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden

Abstract

Solid state reactions at 925°C between the high- T_c ceramic superconductor YBa₂Cu₃O_{7- δ} and La₂O₃ and SrCO₃, respectively, mixed in various molar ratios $r = MeO_n/YBa_2Cu_3O_{7-\delta}$, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa₂Cu₃O_{7- δ} and La₂O₃ yielded (La_{1-x}Ba_x)₂CuO_{4- δ}, with $x\approx 0.075-0.10$,

La_{2-x}Ba_{1+x}Cu₂O₆₋₈, with $x\approx 0.2-0.25$ and La-doped (Y_{1-x}La_x)₂BaCuO₅, with $x\approx 0.10-0.15$. For r=3.0, Y-doped La₂BaCuO₅ resulted also. The reaction between YBa₂Cu₃O₇₋₈ and SrCO₃ yielded (Sr_{1-z}Ba_z)₂CuO₃, with $z\approx 0.1$, Y₂(Ba_{1-z}Sr_z)CuO₅, with z=0.1-0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba_{0.5}Sr_{0.5})₅Cu_{3.5}O_{10±8}. At values of $r\leq 2.0$, unsubstituted YBa₂Cu₃O_{7-delta} was found in the reaction products.

Keywords: La₂O₃, SrCO₃, YBa₂Cu₃O_{7-δ}, superconductors

Introduction

Isomorphic substitutions for host ions in the ceramic superconductor $YBa_2Cu_3O_{7-\delta}$ (labeled below as YBCO or Y_{123}) are possible for a great variety of ions which have ionic radii and oxidation states close to those of the host ions.

In a couple of previous papers solid state reactions between YBCO and oxides of potential substituents for yttrium, such as Eu, Ca, Th, Sc and Ce – [1] – and for copper, such as Fe, Co and Zn [2] were studied. It was concluded that the existence of substituted Y_{123} -phases seems to largely depend on chemical stability relations between the substituted YBCO and compounds of the oxide of the particular substituent ion with oxides of Ba, Y and Cu.

The purpose of this work is to study the solid state reactions between YBa₂Cu₃O₇₋₈ and compounds of elements which have been reported to substitute at the Ba-site, *i.e.* cations such as La³⁺(with ionic radius $R_X = 1.28$ Å) and Sr²⁺ ($R_X = 1.32$ Å). Given the differences in ionic radii between La³⁺, Sr²⁺ and

 Ba^{2+} ($R_X = 1.52$ Å) the main effect of the La and Sr-substitution for Ba is a shortening of the lattice parameters, especially the *c*-axis [3, 4].

La-substituted Y(Ba_{1-x}La_x)₂Cu₃O₇₊₈ was reported to have orthorhombic structure for values of x<0.15 and tetragonal structure for values of $0.15 < x \le 0.36$ [3, 5]. These solid solutions are superconducting, with reduced T_c in the tetragonal state too.

Sr can replace Ba in $Y(Ba_{1-z}Sr_z)_2Cu_3O_{7-\delta}$ up to z=0.4. A linear depression of the T_c in combination with stabilization of the tetragonal crystalline phase with increasing Sr concentration has been reported. For z>0.4 impurity phases, such as $Y_2(Ba_{0.9}Sr_{0.1})_2CuO_5$ and $(Sr_{2/3}Ba_{1/3})_{14}Cu_{24}O_{41}$ emerge [6, 7].

The phase analysis of the reaction products requires a thorough knowledge about the compounds in the investigated systems. The Y-Ba-Cu-O system exhibits three quaternary phases at 925-950°C, in air or oxygen: the black, high- T_c superconductor YBa₂Cu₃O₇₋₈ with orthorhombic structure (Y₁₂₃) [8], the green Y₂BaCuO₅ with orthorhombic structure (Y₂₁₁) [9] and one barium-rich compound with approximate composition YBa₃Cu₂O_x (Y₁₃₂), YBa₄Cu₃O_{8.5+8} (Y₁₄₃) or Y_{1.0-1.33}Ba₈Cu₄O_{13.5±8} (Y₁₈₄), having cubic or tetragonal structures [10-17].

In addition to the 30K-superconductor $(La_{1-x}Bax)2CuO_{4-\delta}$, with $x\approx 0.075$ [18-20] and 90K-superconductor $La_{3-x}Ba_{3+x}Cu_6O_{14\pm\delta}$, with $0.0 \le x \le 0.8$ [20-22], there have been reported three other quaternary phases in the La-Ba-Cu-O system at 925–950°C, i.e. La₄BaCu₅O_{13+ δ}, labeled La₄₁₅ [20, 23, 241. $La_{4-2x}Ba_{2-2x}Cu_{2-x}O_{10-2x}$ with 0.0≤x≤0.25 (La_{211}) [20, 25, 261 and $La_{2-x}Ba_{1+x}Cu_2O_{6-x/2}$, (La₂₁₂) with $0.2 \le x \le 0.8$ [7, 20, 26, 27].

Solid solutions of the type $(Sr, Y, Ba)_{14}Cu_{24}O_{41}$ and $Y_2(Ba, Sr)CuO_5$ were reported to exist in the Y-Ba-Sr-Cu-O system [28]. However, no quaternary compounds were reported in the Y-Sr-Cu-O system [29].

Experimental

Solid state reactions between YBa₂Cu₃O₇₋₈ (the coefficient δ in this article is only a qualitative indication of the oxygen nonstoichiometry of the oxide compounds) prepared by standard ceramic method, and La₂O₃ and SrCO₃, respectively, both of p.a. quality (Merck), were performed by heat treatment of tablets of well homogenized powdered mixtures, for values of the molar ratio $r=MeO_n/YBCO=0.1, 0.2, 0.4, 1.0, 2.0$ and 3.0, respectively, at 925±10°C, in air, for 18-24 h in an electric furnace. The samples were allowed to cool slowly to room temperature, reground and subjected to a second heat treatment in flowing oxygen at the same temperature for 1 h, followed by heat treatment in oxygen at 450°C for 24 h. In connection with the phase analysis of the reaction products, solid solutions were prepared: $La_{4-2x}Ba_{2-2x}Cu_{1-x}O_{10-x}$, with x=0.0 and 0.20, $(La_{1-x}Ba_x)_2CuO_{4-\delta}$ with x=0.075 and 0.10, $La_{2-x}Ba_{1+x}Cu_2O_{6-\delta}$, with x=0.2, 0.3, 0.5 and 0.7, La- and Sr-substituted Y₂BaCuO₅, Ba-substituted Sr₂CuO₃ and a compound with chemical composition Y(Sr_{0.5}Ba_{0.5})₅Cu_{3.5}O₁₀. They were synthetized by repeated heat treatment of well homogenized mixtures of reagent grade (p.a.) starting materials Y₂O₃, CuO, BaCO₃, La₂O₃ and SrCO₃, at 900-950°C, in air. Their X-ray diffraction patterns were used to estimate the degree of solid solubility in the crystalline phases resulting in the reactions between YBa₂Cu₃O_{7-\delta} and La₂O₃ and SrCO₃, respectively.

The reaction products were characterized by their X-ray powder diffraction patterns obtained in Guinier-Hägg-type focusing cameras by using CuK_{α_1} radiation ($\lambda = 1.54059$ Å) and by SEM-EDS studies in a JEOL-820 scanning electron microscope equipped with a LINK AN-10000 EDS system using the ZAF program for evaluating the data.

Table 1 Ca ai	rystalline compounds detected in the reaction products between nd YBCO and SrCO ₃ (B)	YBCO	and La ₂ O ₃	(A)

$r = MeO_n/YBCO$		Crystalline phases detected*
(A) $Me = La$		
0.1	$M - Y_{123}$,	$m - Y_{211}$
0.2	$M - Y_{123}$,	$m - Y_{211}, m - LBC, m - La_{212}$
0.4	$M - Y_{123}$,	$m - Y_{211}$, $m - LBC$, $m - La_{212}$
1.0	M – Y ₁₂₃ ,	$m - Y_{211}, m - LBC, M - La_{212}$
2.0	$t - Y_{123}$,	$M - Y_{211}$, $M - LBC$, $M - La_{212}$
3.0	-	$m - La_{211}, M - LBC, m - La_{212}$
(B) $Me = Sr$		
0.1	M – Y ₁₂₃ ,	m – 153.5
0.2	M – Y ₁₂₃ ,	m – 153.5
0.4	M – Y ₁₂₃ ,	$M = 153.5, m = SBC, t = (Ba_{1-z}Sr_z)CuO_3$
1.0	$M - Y_{123}$,	M – 153.5, t – SBC,
2.0	m – Y ₁₂₃ ,	M – 153.5, m – SBC,
3.0		$m = 153.5$, $M = SBC$, $t = Y_2(Ba_{1-z}Sr_z)CuO_5$

* M=major, m=minor t=trace amounts,

LBC = $(La_{1-x}Ba_x)_2CuO_{4-\delta}$, with $x \approx 0.075 - 0.10$,

 $La_{212} = La_{2-x}Ba_{1+x}Cu_2O_{6-\delta}$, with $x \approx 0.2 - 0.25$,

 $La_{211} = La_{4-2x}Ba_{2-2x}Cu_{2-x}O_{10-2x}$, with $x \approx 0.0$,

SBC = $(Sr_{1-z}Ba_z)_2CuO_3$, with $z \approx 0.10$, and

153.5 = a phase with approximate chemical formula of $Y(Ba / Sr)_5Cu_{3.5}O_{10\pm\delta}$

Results and discussion

Crystalline compounds found in the reaction products according to the X-ray and SEM-EDS analyses are listed in Table 1. The cell parameters of the remaining Y_{123} were determined and listed in Table 2. In order to illustrate the effect of a possible substitution, the cell parameters of pure $YBa_2Cu_3O_{7-\delta}$, La-substituted $Y(Ba_{0.9}La_{0.1})_2Cu_3O_{7-\delta}$ and Sr-substituted $Y(Ba_{0.9}Sr_{0.1})_2Cu_3O_{7-\delta}$ (corresponding to a molar ratio r=0.2), respectively, are also listed.

$r = MeO_n/YBCO$	a/Å	b/Å	c/Å	V/Å ³
(A) $Me = La$				
0.1	3.8217 (7)	3.8862 (8)	11.672 (2)	173.36
0.2	3.8216 (7)	3.8869 (9)	11.676 (3)	173.44
0.4	3.8268 (5)	3.8873 (4)	11.674 (2)	173.66
1.0	3.8210 (2)	3.8910 (4)	11.640 (2)	173.19*
(B) $Me = Sr$				
0.2	3.8207 (8)	3.8865 (7)	11.675 (2)	173.36
0.4	3.8244 (7)	3.8840 (1)	11.678 (2)	173.50
1.0	3.8250 (1)	3.8880 (1)	11.680 (7)	173.75
(C)				
$YBa_2Cu_3O_{7-\delta}$	3.8240 (5)	3.8870 (5)	11.673 (2)	173.52
$Y(Ba_{0.9}La_{0.1})_2Cu_3O_{7-\delta}$	3.8285 (4)	3.8750 (7)	11.629 (2)	172.52
Y(Ba _{0.9} Sr _{0.1}) ₂ Cu ₃ O _{7-δ}	3.8125 (5)	3.8790 (4)	11.653 (3)	172.33

Table 2 Cell parameters of the orthorhombic Y₁₂₃-phase in the reaction products between YBCO and LaO_{1.5} (A), YBCO and SrCO₃ (B) and of some reference compounds (C)

* Cell parameters determined from a limited number of diffraction lines

A. $YBa_2Cu_3O_{7-\delta}+La_2O_3$

Lanthanum oxide was found to react with YBa₂Cu₃O₇₋₈. Reactions between La₂O₃ and YBCO yielded $(La_{1-x}Ba_x)_2CuO_{4-8}$, $La_{2-x}Ba_{1+x}Cu_2O_{6-8}$ and La-substituted Y₂BaCuO₅ for $r=LaO_{1.5}/YBCO \le 2.0$. The amount of the remaining, orthorhombic Y₁₂₃-phase decreased with increasing amounts of La₂O₃ and its cell parameters were found to remain practically unchanged (Table 2).

According to the data no substantial substitution of La for Ba in YBa₂Cu₃O_{7- δ} occurred, except for a possible slight doping of the remaining Y₁₂₃-phase at r=1.0. For r=3.0, the reaction yielded (La_{1-x}Ba_x)₂CuO_{4- δ}, La_{2-x}Ba_{1+x}Cu₂O_{6- δ} and La₂BaCuO₅ with Y substituting partially for La.

The value of x in these compounds has been estimated by comparing the shifts in their X-ray diffraction lines with those of additionally prepared solid

solutions, being about 0.075–0.10 in LBC and about 0.2–0.25 in La₂₁₂. These values of x were in agreement with those found by SEM-EDS measurements or the polycrystalline reaction products.

A slight shift of the strongest diffraction lines of the resulting Y_{211} -phase towards larger *d*-values suggests that the lanthanum ions substitute for the smaller yttrium and not for the larger barium ions. SEM-EDS analysis of the Y_{211} -phase in the reaction product for r=1.0 and 2.0 indicated an average formula of $(Y_{0.9}La_{0.1})_2BaCuO_5$. X-ray diffraction analysis of an additionally prepared solid solution series of samples of composition $(Y_{1-x}La_x)_2BaCuO_5$ confirmed the isomorphic substitution of Y by La up to $x\approx0.10-0.15$. The cell parameters of the resulting orthorhombic Y_{211} are listed in Table 3. For larger values of x polyphasic samples were obtained. On the other hand, attempts to prepare $Y_2(Ba_{1-x}La_x)CuO_5$, with x=0.05-0.2 have failed, the product obtained was found to be polyphasic, containing La₄BaCu₅O₁₃₊₈, unreacted Y_2O_3 and an orthorhombic La-substituted Y_{211} -phase.

 Table 3 Cell parameters of the orthorhombic, La-substituted Y₂₁₁ obtained from starting mixtures of composition (Y_{1-x}La_x)₂BaCuO₅

x in (Y _{1-x} La _x) ₂ BaCuO ₅	a	b	c/Å	V/Å ³
x = 0.00 (S)	7.1322(7)	12.179(1)	5.6597(7)	491.62
x = 0.05 (S)	7.1395(8)	12.196(1)	5.6652(7)	493.28
x = 0.10 (S)	7.1405(9)	12.200(2)	5.6664(9)	493.65
<i>x</i> = 0.15 (P)	7.1480(2)	12.210(3)	5.6690(2)	494.82

S = single phase-, and P = polyphasic product.

B. $YBa_2Cu_3O_{7-\delta}+SrCO_3$

SrCO₃ was also found to react with YBa₂Cu₃O₇₋₈: $(Sr_{1-z}Ba_z)_2CuO_3$, Sr-substituted Y₂(Ba_{1-z}Sr_z)CuO₅, with z≈0.1-0.15, trace amounts of Sr-substituted (Ba_{1-z}Sr_z)CuO₂, with z≈0.1-0.2 (Table 1A) and – at least one – new phase resulted.

SEM-EDS analysis of Ba-substituted $(Sr_{1-z}Ba_z)_2CuO_3$ -phase in the reaction product gave an average value of $z\approx0.1$. X-ray diffraction measurements of additionally prepared compounds wiht z=0.0 and 0.1 confirmed this observation: the cell parameters of orthorhombic $(Sr_{0.9}Ba_{0.1})_2CuO_3$ (a=12.705(1),b=3.9143(4), c=3.5014(4)Å and cell volume $V=174.14Å^3$), have been found to be slightly larger than those of the unsubstituted Sr_2CuO_3 (a=12.7045(1),b=3.9129(6), c=3.4998(4)Å and $V=173.98Å^3$).

Lattice spacings d/Å	Relative intensities
3.702	5
3.626	3
3.180	15
3.156	5
2.857	65
2.822	65
2.704	100
2.482	3
2.315	7
2.119	25
2.110	4
2.060	25
1.933	15
1.891	20
1.755	2
1.668	20
1.653	4
1.645	2
1.625	3
1.595	23
1.577	25

Table 4 X-ray diffraction data for a compound with nominal composition Y(Ba0.5Sr0.5)5Cu3.5O10±8

For values of r=0.1-2.0 the cell parameters of the Y₁₂₃-phase in the reaction products were found to be practically unchanged, indicating that the otherwise common Sr-Ba substitution did not take place this way.

A thorough SEM-EDS analysis of the polycrystalline reaction product between YBCO and SrCO₃ for r=1.0 revealed the presence of a crystalline phase with an approximate cationic ratio of $Y_{1.0(\pm 0.1)}Ba_{2.5(\pm 0.20)}Cu_{3.5(\pm 0.15)}$, which can be an oxide or, probably, an oxide-carbonate.

X-ray diffraction patterns of additionally prepared samples with the composition YBa_{2.5}Sr_{2.5}Cu_{3.5}-oxide were found to be similar with that of the unknown phase. A table of lattice spacings and relative intensities is given in Table 4 for identificational documentation. The exact composition and structure of this phase is the topic of ongoing work. This new phase is not identical with other previously reported Ba-rich phases: YBa₃Cu₂O₆₊₈, (Y₁₃₂), YBa₄Cu₃O_{8.5+8} (Y₁₄₃) or Y_{1.0-1.33} Ba₈Cu₄(CO₃)₂O_{14.3} (Y₁₈₄).

Conclusion

Reactions between YBa₂Cu₃O_{7- δ} and La₂O₃ and SrCO₃, at 925°C in air, at ambient pressure, result in decomposition of the YBa₂Cu₃O_{7- δ}. At values of $r=MeO_{\rm B}/YBCO<2.0$ the remaining YBa₂Cu₃O_{7- δ} was not found to be substituted neither by La nor by Sr.

Substantial La/Ba and Y/La and Ba/Sr intersolubility occurs in the crystalline reaction products. Reactions between YBa₂Cu₃O_{7- δ} and La₂O₃ yield (La_{1-x}Ba_x)₂CuO_{4- δ}, with x \approx 0.075-0.10, La_{2-x}Ba_{1+x}Cu₂O_{6- δ}, with x \approx 0.2-0.25 and (Y_{1-x}La_x)₂BaCuO₅, with x \approx 0.1-0.15 for values of r \leq 2.0. For r=3.0 Y-substituted La₂BaCuO₅-phase was also detected in the reaction product.

Reactions between YBa₂Cu₃O_{7- δ} and SrCO₃ result in solid solutions of type $(Sr_{1-z}Ba_z)_2CuO_3$, with $z\approx0.1$, Y₂(Ba_{1-z}Sr_z)CuO₅ with z=0.1-0.15 and a compound with approximate composition of Y(Ba_{0.5}Sr_{0.5})₅Cu_{3.5}O_{10± δ}.

* * *

The author is grateful to Prof. Mats Nygren and Prof. Lars Kilborg for valuable discussions and for comments on the manuscript. I wish to express special thanks to Mr. Lars Göte for X-ray diffraction measurements.

References

- 1 Z. Hegedüs, Eur. J. Solid State Inorg. Chem., 29 (1992) 1093.
- 2 Z. Hegedüs, Solid State Ionics, 66 (1993) 15.
- 3 P. Karen, H. Fjellvåg and A. Kjekshus, J. Solid State Chem., 97 (1992) 257.
- 4 M. S. Islam and R. C. Baetzold, Phys. Rev. B40 (1989) 10926.
- 5 A. V. Narlikar, C. V. Narashima Rao and S. K. Agarwall, Studies of High Temperature Superconductors, Nova Science Publishers, New York, 1989, Vol 1., p.341-375.
- 6 P. Karen, H. Fjellvåg, A. Kjekshus and A. F. Andersen, J. Solid State Chem., 92 (1991) 57.
- 7 P. Karen, O. Braaten and A. Kjekshus, Acta Chem. Scand., 52 (1992) 805.
- 8 J. J. Capponi, C. Chaillout, A. W. Hewatt, P. Lejay, M. Marezzio, N. Nguyen, B. Raveau, J. L. Soubeyroux, J. L. Tholence and R. Tournier, Europhysics Letters 3 (1987) 1301.
- 9 C. Michel and B. Raveau, J. Solid State Chem., 43 (1982) 73.
- 10 J. Šestak, Pure and Appl. Chem., 64 (1992) 125.
- 11 K. G. Frase and D. R. Clarke, Adv. Ceram. Mat., 2 (1987) 295.
- 12 R. S. Roth, K. L. Davis and J. R. Dennis, Adv. Ceram. Mat., 2 (1987) 303.
- 13 G. Wang, S. J. Hwu, S. N. Song, J. B. Ketterson, L. D. Marks, K. R. Poppelmeier and T. O. Mason, Adv. Ceram. Mater., 2 (1987) 313.
- 14 D. M. de Leeuw, C. A. H. A. Mustaers, C. Langereis, H. C. A. Smoorenburg and P. J. Rommers, Physica C, 152 (1988) 39.
- 15 D. M. De Leeuw, C. A. H. A. Mustaers, R. A. Steeman, E. Frikkee and H. W. Zanderbergen, Physica C, 158 (1989) 391.
- 16 H. Fjellvåg, P. Karen, A. Kjekshus and J. K. Grepstad, Acta Chem. Scand., A42 (1988) 171.
- 17 P. Karen and A. Kjekshus, Solid State Chem., 94 (1991) 298.
- 18 B. Raveau, C. Michel, M. Hervieu and D. Groult, Crystal Chemistry of High-T_c Superconducting Copper Oxides, Springer Verlag, 1991, p.7-90.

- 19 J. Schmierer, G. Mc Carthy, A. Moorthy, F. Larson, N. D. State Univ., Fargo, N. D., USA, JCPDS Grant-in-Aid Report (1987), File No. 38-1308.
- 20 D. Klibanow, K. Sujata and T. O. Mason, J. Am. Ceram. Soc., 71 (1988) C267.
- 21 L. Er-Racho, C. Michel, J. Provost and B. Raveau, J. Solid State Chem., 37 (1981) 151.
- 22 W. Wong-Ng, H. Mc Murdie, B. Paretzkin, C. Hubbard and A. Dragoo, NIST (USA), JCPDS Grant-in-Aid Report (1988), JCPDS-ICDD file 39-1414.
- 23 W. Wong-Ng, H. Mc Murdie, B. Paretzkin, C. Hubbard and A. Dragoo, NIST (USA), JCPDS Grant-in-Aid Report (1988), JCPDS-ICDD file 39-1415.
- 24 C. Michel, L. Er-Racho and B. Raveau, Mater. Res. Bull., 20 (1988) 667.
- 25 C. Michel, L. Er-Racho and B. Raveau, J. Solid State Chem., 39 (1981) 161.
- 26 W. Wong-Ng, B. Paretzkin and E. R. Fuller, J. Solid State Chem., 85 (1990) 117.
- 27 D. M. de Leeuw, J. Less-Common Metals, 150 (1989) 95.
- 28 D. M. de Leeuw, C. A. H. A. Mustaers, G. P. J. Geelen, H. C. A. Smoorenburg and C. Langereis, Physica C, 152 (1988) 508.
- 29 R. S. Roth, C. J. Rawn, J. D. Whitler, C. K. Chiang and W. K. Wong-Ng, J. Am. Ceram. Soc., 72 (1989) 395.

Zusammenfassung — Mittels Debye-Scherrer-Aufnahmen und Scanning-Elektronenmikroskopie wurden bei 925°C die Feststoffreaktionen zwischen dem Hoch- T_c -Keramiksupraleiter YBa₂Cu₃O_{7- δ} und La₂O₃ und SrCO₃ in Gemischen mit einem verschiedenen Molverhältnis $r = MeO_n/YBa_2Cu_3O_{7-\delta}$ und La₂O₃ und SrCO₃ in Gemischen mit einem Verschiedenen Molverhältnis $r = MeO_n/YBa_2Cu_3O_{7-\kappa}$ untersucht. Die Reaktion zwischen YBa₂Cu₃O_{7- δ} und La₂O₃ ergibt (La_{1-x}Ba_x)₂CuO_{4- δ} mit $x\approx0.075-0.10$, La_{2-x}Ba_{1+x}Cu₂O_{6- δ} mit x=0.2-0.25 und La-versetzte (Y_{1-x}La_x)₂BaCuO₅ mit x=0.10-0.15. Für r=3.0 entsteht außerdem noch Y-versetztes La₂BaCuO₅. Die Reaktion zwischen YBa₂Cu₃O_{7- δ} und SrCO₃ liefert (Sr_{1-x}Ba_x)₂CuO₃ mit $z\approx0.1$, Y₂(Ba_{1-x}Sr_z)CuO₅ mit z=0.1-0.15 sowie eine nicht supraleitende Verbindung mit einer etwaigen Zusammensetzung von Y(Ba_{0.5}Sr_{0.3})₅Cu_{3.5}O_{10 δ 8. Bei Werten von $r \leq 2.0$ wurde unter den Reaktionsprodukten auch nicht umgesetztes YBa₂Cu₃O_{7- δ} gefunden.}